2003 Portfolio and Project Review

Materials Portfolio

Sara Dillich
Industrial Technologies Program

Washington, DC June 23, 2004

Office of Energy Efficiency and Renewable Energy U.S. Department of Energy

- ITP Materials
- Portfolio
 - Focus Areas
 - Barrier-Pathway Approach
 - Partners

- Highlights
- Priorities, Plans and Activities

Industrial Technologies

Buddy Garland, Program Manager

Technology Delivery

Advanced Process Systems

- Materials, Sensors & Automation
- Metals & Mining

Chemical and Enabling Technologies

- Industrial EnergySystems
- Chemical & Allied Processes

Materials, Sensors & Automation

DOE Headquarters

- Sara Dillich: Lead Technology Manager
 - Materials
- Elliott Levine Glass
- Gideon Varga Sensors and Automation

DOE-GO:

• Mahesh Jha: Materials Projects Manager

Materials sub-program Support

- Pete Angelini (ORNL)
- Ross Brindle (Energetics)
- Bill Choate (BCS)
- Roy Tiley (BCS)
- Glenn Whichard (Sayres) full time Materials support
- Scott Birkmire: Golden Office Materials Support

ITP Materials Sub-program

Mission - Lead a national effort to research, design, develop, engineer, and test new and improved materials for energy efficiency in industrial processing and manufacturing.

FY03 FY04 FY05(request) \$12.7M \$12.7M \$11M

Portfolio

Focus Areas

• Barrier-Pathway Approach

Partners

Analysis-Guided Planning

Activity

- Program Goal Setting
- Technology Area Planning
 - Focus Areas
 - Project Solicitation

Project Selection & Execution

Assessment & Evaluation

Supporting Analysis

- Energy Opportunity Analyses
- Barrier/Pathway
 Approach
- Expert Merit Reviews
- GPRA
- Detailed Milestone Tracking (CPS)
- Corporate & Portfolio Peer Review
- Follow-Up Studies

Program Planning Inputs

Focus Areas

Analytic Studies

Barriers/R&D Pathways

Summary of Materials R&D Focus Areas

Focus Area

- Degradation-Resistant Materials
- Thermophysical Databases and Modeling
- 3. Materials for Separations
- 4. Materials for Engineering Applications

Goal

- Improve the corrosion and wear resistance of industrial materials; improve hightemperature performance of refractories.
- Improve the availability, accuracy, and accessibility of property data required to understand, simulate, and optimize materials used in industrial processes.
- Research, design, develop, engineer, and test new and improved materials for separation.
- Improve material properties and develop appropriate fabrication methods for industrial processing applications.

Focus Areas Address Crosscutting IOF Needs

1. Degradation-Resistant Materials (19 projects)

- Alloy and composites development
- Advanced processing methods and coatings
- Refractories

2. Thermophysical Databases and Modeling (4 projects)

- High-temperature materials data and performance prediction
- Degradation prediction
- Combinatorial methods for alloy design

3. Materials for Separation (2 project)

- Membranes, catalysts, zeolites
- Advanced Chlor Akali Technology

4. Materials for Engineering Applications (10 projects)

 Tools and dies, joining and weld assessments, advanced materials solutions for enhanced heat recovery and reliability

Studies to Identify Barriers and Priorities

- Degradation Resistance:
 - Refractories Opportunity Analysis (draft for review)
 - Energy Cost of Corrosion (initiated)
- Thermophysical Databases and Modeling:
 - Opportunities Analysis (in preparation)
- Materials for Separation:
 - Opportunities Analysis (draft for review)
- Materials for Engineering Applications:
 - Materials for Waste Heat Recovery and Reuse
 - Others in planning stages

Focus Area 1. Degradation-Resistant Materials

Opportunity Identification: Refractory Materials

Energy Saving Potential

(preliminary results, savings for 2020)

IMF Refractory Focus Areas

- **1** Forest Products
- 2 Petrochemical
- 3 Chemical
- 4 Aluminum/Metal Casting/Glass
- **5** Cement/Lime

¹⁻ Princeton University, Navigant Consulting, Politecnico di Milano report on Gasification Power Generation in the Pulp & Paper Industry

² – Crosscutting Refractory and Insulation Material R&D Needs and Opportunities for Industries of the Future, ORNL

Analytic Basis for Materials Program Priorities

- Use roadmaps to identify the crosscutting materials priorities
- Set focus areas based on areas of greatest need among IOFs
- Quantify potential energy savings in each focus area via Opportunity Analyses
- Issue solicitations and selected projects in each focus area to realize Opportunities

Thermoelectric Materials for Waste Heat Recovery (CPS# 16947) Barrier-Pathway Approach

Barriers

- Low energy efficiency furnaces due to heat loss
- Lack of robust, affordable, materials for TE devices

Pathways

- Development of thin film thermoelectric materials
- Modeling to develop and design retrofit TE generators for implementation in waste heat stacks
- Economic analysis for implementation TE technology

Critical Metrics

- TE Figure of merit ZT > 6
- Production of power with an efficiency greater than 20% for a retrofit system

Benefits (est.)	2020
Energy Savings	135 trillion Btu
Cost Savings	\$980 million
Carbon Reduction	0.4 MMTCe

Broad Industry Participation

Over 170 FY2004 Materials R&D Partner Locations

Industry – 135 Laboratories – 11 **Universities – 25 Associations - 4**

DOE Dollars by Partner Type FY04

Highlights

Thanks for Sending in Weekly Highlights!!!

FY03-04 Accomplishments

Database of Thermodynamic Data for Industrial Applications Now On-Line

- Provides information for those seeking to simulate high-temperature processes for optimal material selection and failure mechanism analysis
- Contains data on over 600 gas-phase compounds and a wide range of metal oxides used in refractories
- Planned expansion will more than triple the number of compounds in the database
- Site receives more hits than any other at Sandia Combustion Research
 Facility

Estimated benefits approach
 12 trillion Btu/year

Two IMF Projects Win R&D Magazine's 2003 R&D 100 Awards

• Novel Carbon Films for Next Generation Rotating Equipment (CPS# 1785) provides exceptional friction and wear properties in wet, dry, and high-temperature environments. Target applications are rotating machinery applications.

Partners: Univ. of Illinois, Drexel Univ., Argonne National Laboratory, and industrial partners

• Ultrananocrystalline
Diamond Coatings (CPS#
1798) improve wear resistance
on mechanical pump seals. The
award specifically honored the
development of a large-scale, sixinch reactor used to deposit a
diamond coating on materials.

Partners: Argonne National Lab, Advanced Diamond Technologies, John Crane, Inc.; Morgan AM&T; Coorstek Amazing Solutions; Innovative Plasma Systems GmbH (IPLAS)

Priorities, Plans and Activities

Top ITP Management Priorities

• Fund excellent R&D projects

Reduce project uncosted balances

Materials Priorities

• Use Focus Area, Barrier, Pathway model to identify and fund high energy savings opportunities

• Increase effort in materials for separations, refractories, databases and modeling

Materials Priorities

• Update IMF program plan in 2004/05

- Track implementation of results of completed projects
 - Facilitate commercialization, transfer of knowledge

Solicitation Planning

FY 2006 Funds

- Possibly a small solicitation in 2005 for Materials for Separations (\$1-1.5M)

FY 2007 Funds

- Solicitation in 2006 for Focus area priorities (depends on funds available in 07)

Reviews and Meetings

- Corporate Peer Review, March 11-12, 2004
- NAS Corporate Peer Review, May 19-20, 2004

• ASM Symposium on *Materials for Energy Efficiency in Industrial Processes and Manufacturing*organized for ASM Materials Week, October 2004.

Future Portfolio Reviews

 Annual Materials, Sensors and Glass Reviews

Corporate Peer Reviews every other year

• End of Presentation

IMF Partners FY04

